MRV is introduced as one hurdle to clear for designing a NAMA. However, MRV is more than a formal requirement. MRV is a key for successful policy making and helps to generate a complete picture of the global progress towards halting global warming. From developing countries’ point of view MRV of NAMAs is beneficial for three different reasons:

1. MRV of NAMAs helps to understand the effectiveness of measures and to improve the efficiency of the implementation (Monitoring & Evaluation). Knowing about the impact of mitigation actions is not only relevant for GHG mitigation but also helps to demonstrate the contribution towards development objectives of a country.

2. MRV of NAMAs is essential for donors to determine the impact of the support provided. Besides the mitigation impact of policies, the contribution towards sustainable development may be part of Bilateral MRV agreements between NAMA host countries and developed country NAMA financial supporters.

3. Finally the international MRV through the UNFCCC process of NAMAs is part of the National Communications and helps to monitor whether a country is on track towards GHG mitigation.
Transparency on emission reductions is key

Measuring is part of everyday life and essential when it comes to describing or changing conditions. I want to “lose weight”. I want to “save money”. I want to “be happier.” Some of these objectives can be measured simply by one indicator (e.g. weight, expenses, income) while others cannot be quantified directly. To measure happiness, e.g. we need to use indirect indicators that imply fortune and satisfaction. Measuring the mitigation impact of transport policies can be similar in a way. The following section explains why it is worth the effort of applying MRV as a means to learn more about the impact of transport measures and policies.

For policymakers on national and sub-national level the emission of greenhouse gases, of which CO₂ is the most significant, may not be one of the main drivers for transport policy. Unlike congestion, noise, road safety, or air pollution, CO₂ emissions are not perceived as a problem that affects local areas, and they do not have an immediate impact in monetary terms. In most cases, the benefits of implementing mitigation actions in the transport sector go beyond GHG emission reductions and contribute to achieving local policy objectives (Co-Benefits). Therefore mitigation actions can be used as a vehicle to achieve national development objectives in the transport sector.

The term MRV was coined in the Bali Action Plan (2007) and stands for measurable, reportable, and verifiable. The idea of the MRV approach is to enhance “mitigation actions by developing country Parties in the context of sustainable development, supported and enabled by technology, financing and capacity-building, in a measurable, reportable and verifiable manner.”[3] In other terms, mitigation actions need to be MRV-able in order to be registered as NAMA under the UNFCCC. Following this terminology, the implementation of MRV is not necessarily mandatory but may be required by a programme oversight body. However, the responsibility for implementation and monitoring of NAMAs will lie with the host country.[4] MRV-able measures involve on one hand verifiable implementation of measures, on the other hand information on the contribution of the measure to reducing emissions and therefore climate change mitigation. This is particularly stringent for NAMAs that receive international financial support.[5] In this case, metrics and indicators are decided bilaterally as appropriate to national circumstances, the nature of the NAMA, and the particular needs of the donor and host countries.[6]

[4] UNEP Risoe/A primer on MRV for NAMAs
M is for Measuring: To control whether a standard or objective is fulfilled it is required to measure performance. In this context ‘measuring’ is often used synonymously with ‘monitoring’. Though the two do not mean the same and are not feasible in all contexts. To put it simply, all that can be measured can also be monitored; but not all that is monitored can be necessarily measured quantitatively. As the original texts in the climate negotiations speak of ‘measurement’, this term is used throughout this handbook.\[7\]

R is for Reporting: One commitment by the parties of the UNFCCC was to report progress on climate related activities. The reporting happens via national communications. The Cancun agreements state that developing countries should submit their reports every four years as well as biennial update reports. The required metrics, data, and indicators are decided by the international negotiating community and reported in Biennial Update Reports of the national communications. The standards for MRV reporting in the UNFCCC context may be more rigid than those used in bilateral MRV agreements.\[8\]

V is for Verification: The intention of verification is to ensure that the submitted information is correct and that confirmed methodologies for measuring mitigation progress are applied. The process of verification might entail the analysis of biennial update reports by independent consultants or the examination of the impact of mitigation actions by sectoral specialists. Verification may also lead to improvements in the quality of reports through recommendations and, or facilitating collegial exchange.\[9\]

The main benefits of MRV are summarised in Figure 2.1.

\[7\] UNEP Risoe/A primer on MRV for NAMAs

\[8\] http://www.ccap.org/docs/resources/1029/MRV%20for%20NAMAs%2011-30-11.pdf

\[9\] http://mitigationpartnership.net/sites/default/files/factsheet_minderung_mrv_en_2012-02-17.pdf
What to be MRVed?

Generally, MRV of a NAMA is just one part of a broader demand for more transparency towards four different aspects: 1) total GHG emissions per year and country (as contained in a GHG emission inventory), 2) estimated reduction of GHG emissions from mitigation action (e.g. from NAMAs), 3) technical and financial support provided by an industrialised country, and 4) technical and financial support received from a developing country. This handbook addresses MRV of NAMAs only. Information on National Reporting, GHG inventories and related topics can be found here. Figure 2.2 illustrates the different components of MRV.

The components of MRV have a different reference in terms of time. GHG inventories always refer to historical data and therefore are always an ex-post figure. Estimated emission reductions are a forecast on the expected mitigation impact in the NAMA proposal (ex-ante scenario). Also, the emission reduction can be part of a report on the achieved reduction based on measurement (ex-post).

The MRV framework for NAMAs aims at providing assurance to stakeholders that projects and programmes meet certain requirements; that their implementation is carefully monitored, and that progress is reported and the results verified. Based on the outcome of the Ad Hoc Working Group on Long-term Cooperative Action of the COP 17 in Durban on NAMAs, developing countries are encouraged to submit, as appropriate, information 1.) on estimated emission reductions, 2.) other indicators of implementation and 3.) other relevant information, including the co-benefits for local sustainable development.

Compared to other energy consuming sectors estimating the mitigation impact of transport policies and measures can be quite difficult. The reasons for this are on one hand the lack of (solid) evaluation data of implemented transport policies and on the other hand the complexity of the transport sector as a system. This complexity can be explained for example by a high number and diversity of mobile sources which are subject to millions of individual decisions, the high number of stakeholders involved and the technical challenges related to energy efficiency and alternative fuels.

As introduced in section one, there is a variety of policies and measure that are eligible to being developed as a NAMA. The scope can vary significantly from project level (e.g. public bicycle scheme) to programme (e.g. vehicle scrapping) or even a sector wide policy (e.g. reducing fuel subsidies). Accordingly, measuring

[10] UNEP Risoe/A primer on MRV for NAMAs
of the emission reduction of each individual transport NAMA needs to be developed with regard to its character of impact on the transport system. Generally, CO₂ emissions from transportation can be calculated in a top-down or in a bottom-up approach.

The top-down approach uses fuel sales of a country or a region as a basis for calculation. In this way, GHG emissions can be calculated from the amount of fuel consumed in a certain period. This approach is suitable to determine the overall emissions of the transport sector and is therefore used for national reporting. The top-down approach also enables the estimation of future fuel consumption using econometric techniques that examine past behaviour of the system as a whole. This economic analysis is used to derive price and income elasticities, which are in turn applied to future scenarios. These models are eligible to estimate the impact of sector wide policies.

To estimate the climate impact of policies and measures with limited system impact the use of the top-down-approach alone is not sufficient. However, it can be useful to cross-check bottom-up calculations with the top-down approach.

The most common methodology of a bottom up-approach is based on transport activities, structure, energy intensity, and a carbon factor effect, which is related to the composition of fuels. This analytical methodology is described as ASIF method and can be formalised mathematically as follows (Schipper et al., 2000):

\[G = A \times S_i \times I_i \times F_{i,j} \]

- \(G \) stands for the carbon emissions from the particular transport sector,
- \(A \) is total travel or freight activity (in passenger- or ton-kilometres),
- \(S \) is a vector of the modal shares, and
- \(I \) is the modal energy intensity of each mode \(i \). The last term, \(F_{i,j} \), represents the sum of each of the fuels \(j \) in mode \(i \), using standard IPCC coefficients to convert fuel (or electricity) used into carbon emissions.

Each of these terms responds to different forces from economic development, technology, policy or others. The ASIF framework helps to capture the characteristics of the current transport system and can be used for emission monitoring and measurement. The following examples may help to understand this methodology:

Figure 2.3: Approaches to describe the GHG emissions from transport (ASIF). Source: adapted from Böhler-Baedecker and Hüging “Urban Transport and Energy Efficiency” (forthcoming)
Table 2.1: Policy examples and their impact in the ASIF scheme

<table>
<thead>
<tr>
<th>ASIF Factor</th>
<th>Policy</th>
<th>Assumption</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Activity</td>
<td>City Logistic Concept</td>
<td>Logistic Companies use more efficient routes.</td>
<td>Vehicle kilometres are reduced.</td>
</tr>
<tr>
<td>(Transport Demand)</td>
<td>Home-Office</td>
<td>Employers promote the use of home-office</td>
<td>Number of work-related trips is reduced.</td>
</tr>
<tr>
<td></td>
<td>Mixed Land-Use Policy</td>
<td>Different facilities (e.g. workplaces, shops for daily needs, school, sport facilities) in new urban areas are accessible by foot or by bike</td>
<td>New residents cover many destinations in short distances (less kilometres)</td>
</tr>
<tr>
<td>S – Modal Share</td>
<td>Improvement of Public Transport Service</td>
<td>The capacity and quality of public transport encourages car-drivers to shift</td>
<td>Modal share (of passengers) changes towards more public transport and less car use</td>
</tr>
<tr>
<td>(Structure of Modes)</td>
<td>Road Pricing for Heavy Duty Vehicles</td>
<td>Alternative modes are available (water- or railways)</td>
<td>More goods are being transported by ship and rail (modal share of freight)</td>
</tr>
<tr>
<td></td>
<td>Parking Management</td>
<td>On-street parking is permitted in CBD, prices for off-street parking are increased</td>
<td>NMT share for short and public transport for medium distances increases</td>
</tr>
<tr>
<td></td>
<td>Policies to influence fleet demand</td>
<td>Financial incentives promote replacement of old, inefficient Heavy Duty Vehicle to more efficient ones</td>
<td>Reduction in medium and long term of Engine Intensity</td>
</tr>
<tr>
<td>I – Energy Intensity</td>
<td>Restrictions for Single-Car-Users</td>
<td>Reserved Street Lanes for minimum 3 passengers per car</td>
<td>Potential Improvement on Capacity Utilisation of cars</td>
</tr>
<tr>
<td></td>
<td>Policies to change Fuel prices</td>
<td>Introduction of Fuel Tax/Reduction of Fuel Subsidies</td>
<td>Possible reduction in engine efficiency and vehicle size, possible increase in capacity utilisation</td>
</tr>
<tr>
<td></td>
<td>Policies to influence vehicle fleet supply/production</td>
<td>Introduction of regulations and manufacturer performance mandates</td>
<td>Short-term potential with low-sulphur diesel or hybrids, medium-term with battery-electric, long-term with hydrogen fuel-cell electric technologies</td>
</tr>
<tr>
<td>F – Fuel Carbon</td>
<td>Policies to influence fleet demand</td>
<td>Promotion of hybrid technology in public transport</td>
<td>Depending on energy sources possible decrease of carbon content</td>
</tr>
<tr>
<td>Content</td>
<td>Environmental Zones</td>
<td>Reserved Parking Areas for Electric Motorbikes</td>
<td>Depending on energy sources possible decrease of carbon content</td>
</tr>
</tbody>
</table>

2
All of these examples demonstrate how policies impact a certain level of the ASIF scheme. However, most policies have influence on different factors of ASIF. For example, a Mixed Land-Use Policy does not only reduce distances travelled but also promotes the shift to public transport and non-motorised transport. In this case, it is an additional and supporting impact that contributes to the mitigation of GHG emissions. Other policies can have counter-productive impacts at different levels, as e.g. the promotion of home office may increase the travel activity of other members in the household due to the availability of a car or motorbike which is not available on normal working days (can induce additional trips or the shift from NMT to motorised transport). These implications cannot be elaborated until the very last consequence. However, it is important to consider the different levels of impact as well as rebound effects in order to achieve a transparent estimation of climate impacts.

The challenging task is to quantify the impact on a certain factor within the ASIF framework. There are many existing methodologies that help to estimate this impact, namely modelling (ex-ante), measurements (ex-post), and proxies on the basis of data and emission factors (similar to national GHG inventories). In many cases of transport policies the direct emissions reduction of NAMAs cannot be measured. It can be argued that MRV of NAMAs does not necessarily need to be based on emission reductions. It should however, prove that GHG emissions are being reduced, that support is used for the stated purpose and that proposed actions are actually and effectively undertaken.\[14\]

It is a matter of the nature of a NAMA how a MRV approach needs to be set up. Basically every policy requires an individual MRV plan that is appropriate to the local capacity and data availability. Based on experiences from other financing mechanisms, such as the Global Environment Facility, Clean Technology Fund, or the Clean Development Mechanism the transaction costs for transport projects can become excessively high due to very complex system impacts. Taking into account these experiences it appears recommendable to aim at an approach which is simple, yet solid.

How to develop an MRV plan?

2.1 Step 1: Identify key parameters for the MRV approach

The MRV approach of a NAMA should answer the following questions:

- Are actions really happening?
- Are the resources used for the purpose they were provided for?
- How effectively are actions being taken?
- What is the expected order of magnitude of emission reductions?
- Have the expected emissions reductions been achieved?
- How do mitigation actions contribute to sustainable development?

Answering these questions may be fully sufficient for unilateral and supported NAMAs, as long as there are no contradictory specifications existing on this issue on international level.

\[14\] Larmuseau, Luc (2011): MRV: NAMA’s, future and challenges. Presentation
i) Define scope of the measure

The first precondition of the development of an MRV plan is the definition of the scope of a NAMA which can be determined by project, programme and policy boundaries. Depending on this limitation the potential impact of a NAMA can be elaborated.

For policies with sector-wide impacts it is required to set up a baseline for the full transport sector. For programmes or projects with an impact on a specific sub-sector of the transport system (e.g. heavy duty vehicles) or geographical area (e.g. improvement of a public transport connection) the MRV approach can be built up on simplified calculation schemes based on project or programme indicators (e.g. using the number of vehicles replaced and average kilometres per year).

MRV approaches designed for the project level with limited system impact, e.g. fleet rejuvenation or toll collection, do not necessarily require a complete baseline scenario. The only information required is the potential emission reduction achieved by the policy and this can be calculated based on a number of indicators; e.g. in the case of fleet rejuvenation the calculation can be simply based on the number of vehicles, kilometres travelled in a certain period and the reduced fuel consumption per kilometre. To calculate the reduced fuel consumption one has to compare the old vehicles with the new ones which could be described as a baseline (baseline is number of old vehicles × km travelled × fuel consumption per km).

Policies with sector-wide impacts are e.g. the implementation of fuel efficiency standards, reduction of fuel-subsidies or a national public transport strategy. In order to estimate the impact on emission reductions a baseline scenario is required to figure out the potential reduction achieved through the implementation of certain policies (business-as-usual-scenario and policy scenario).

MRV experience for such activities is still scarce and will be gathered only from real-world mitigation actions over time. This is illustrated by policies and measures in the transport sector from developed countries and, more recently, by NAMAs which are currently being developed in the transport sector in a number of developing countries. [15]

ii) Identify different types of indicators

Not only indicators for direct emission reductions may be used but also indirect or proxy indicators (e.g. kilometres of new bicycle lanes) and even process indicators (e.g. number of workshops conducted), where appropriate. This approach may suit the characteristics of a lot of transport NAMAs much better; because they may not actually result in direct, immediate emission reductions but rather lead to indirect emission reductions in the long-term (e.g. fuel savings due to technical improvements can be quantified but the mitigation impact of the promotion of non-motorised transport has to be proven indirectly).

Depending on the nature of the NAMA and the data available, a combination of different indicators may be used. Huizenga and Bakker (2010) assert: “because of the huge costs of accurate data collection, as well as the variety in local conditions, the monitoring of GHG impacts in the transport sector lends itself to a mixture of actual

calculation of GHG emissions reductions, indirect or proxy indicators and, in some cases, process indicators.” Table 2.2 gives an overview of the different types of indicators, examples and their likely application.

Table 2.2: Different types of Indicators for a MRV approach for a transport NAMA

<table>
<thead>
<tr>
<th>Examples</th>
<th>Indirect or proxy indicators (output indicators)</th>
<th>Process indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct estimation of emission reductions (outcome indicators)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonnes of abated CO₂ equivalent and subordinated direct GHG impact indicators to calculate emission reductions, e.g. carbon content of the fuel.</td>
<td>Kilometres of new bicycle lanes; Changes in modal split; Number of newly registered vehicles with new fuel efficiency standard.</td>
<td>Policy or regulation passed; Number of capacity building workshops organised or number of people trained; Budget allocated and spent.</td>
</tr>
<tr>
<td>Likely applicability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project-based NAMAs; NAMAs with direct mitigation impact; Good data availability.</td>
<td>Projects with direct mitigation impact, but insufficient data availability; Complex interventions with high (costly) data demand, such as modal shift or avoid actions; Actions with indirect mitigation effects.</td>
<td>Projects with indirect mitigation effects, such as capacity building, establishment of emission databases, etc.</td>
</tr>
</tbody>
</table>

Source: own compilation based on Huizenga and Bakker (2010)

Depending on the NAMA design, only some or a mix of the above types of indicators can be used to develop an MRV approach for both GHG mitigation effects and other co-benefits.
iii) Screen available tools and models

Many experiences can be drawn from monitoring and evaluation of transport policies. There is a broad range of models and tools available. For an overview of GHG assessment tools in the transport sector and links to the original documents, please visit http://www.slocat.net/?q=content-stream/187/ghg-assessment-tools#.

Some examples of MRV approaches for transport NAMAs will be soon available in Part II of this handbook and in the TRANSfer toolbox.

2.2 Step 2: Check data availability and needs

Availability of data in an appropriate quality is crucial for the application of MRV. In any case, data will have to be generated, gathered and updated. These activities, however, have a value beyond MRV: detailed and reliable data on transport issues is key for all kinds of transport policies and strategies, e.g. road safety and air quality enhancements. Therefore, co-ordinated approaches to the improvement of data availability such as the SLoCaT Initiative are helpful and will need further efforts on the way towards sound policy-making in the transport sector.

In the case that data is not fully available for some key parameters, a data collection process needs to be set up. A valuable guidance is available from the Victoria Transport Planning Institute (http://www.vtpi.org/wellmeas.pdf). Such activities can be costly and time-intensive and might need additional expertise, e.g. on the measurement methodology that needs to be applied. Therefore, such data collection processes should be part of the overall technical support provided by developed countries that partner with the host country in the context of a bilaterally supported NAMA. In the future, climate-technology centres[16] might be well-positioned to provide support in terms of capacity building in the context of multilaterally supported NAMAs.

The availability of transport data in developing countries varies from country to country. In any case it will be required to gather and update data. Basically it can be distinguished between data that is routinely monitored due to enforcement and regulation (e.g. vehicle registration by type of vehicle, of fuel, of technology), data that is surveyed on demand for monitoring and evaluation of policy and planning (e.g. average frequency of busses, average load factor, passenger load vs. capacity), and data that is gathered ad-hoc (e.g. vehicle population, trips length, travel speed, trip mode share). Very often there is a lack of harmonized methodologies and limited data sharing between different institutions of the private and public sector. MRV planning should take these factors into account and include procedures that accommodate the cooperation between different institutions.

[16] The Climate Technology Centre shall facilitate a network of national, regional, sectoral and international technology networks, organisations and initiatives with a view to engaging the participants of the Network in the field of Technology development and transfer. For more information see: http://unfccc.int/ttclear/jsp/CTCN.jsp
In order to ensure a certain quality it is advised to acknowledge the following five factors. High quality data is characterised by:

Relevance The collected data is relevant for the information required.

Consistency The methodology of data gathering is consistent in order to receive comparable information.

Verifiably Data is verifiable, e.g. by datasets, official documents or interview records.

Transparency Data is comprehensible and clear, e.g. list of abbreviations, sources default data.

Reliability The process of data gathering and processing is carried out by a trustworthy institution and technical instruments should work steadily.

However, after all poor data quality or lack of data should not be understood as a barrier for NAMA development. In fact, MRV of NAMAs contributes to improve this situation and pave the way for better policy making in the future.

2.3 Step 3: Ex-ante estimations

One required information in a NAMA proposal is the estimated mitigation impact. The ASIF methodology provides a practical framework to approach this task. A practical guidance is provided in the Energy Efficiency Navigator.

Beyond this GHG emissions mitigation effect, most likely transport NAMAs will lead to other benefits. These co-benefits contribute to sustainable development by creating benefits to the economy (e.g. increase in number of jobs), environment (e.g.

There is a number of tool and models which can be used for this purpose (e.g. TEEMP Model[^17]). For several policies and measures it can be quite challenging to estimate the mitigation impact. It is recommended to refer to studies and evaluation reports of already implemented policies and experiences made worldwide. This kind of information is a helpful reference to validate the results of an analysis or expert assessment.

2.4 Step 4: Develop an MRV process to track implementation and impacts

Finally, a monitoring plan will be set up to facilitate the process of monitoring and recording of the key parameters and other information. According to the UNFCCC handbook on NAMAs, this monitoring plan should clarify:

- Assumptions/default values used and relevant data sources;
- Frequency of monitoring and reporting of monitored parameters;
- Description of data storage plan, e.g. use of existing Geo Information Systems (GIS);
- Responsibilities of specific actors with regard to monitoring and reporting;
- Methodologies to be applied to calculate mitigation benefits;
- Level of accuracy to be applied, e.g. scope of a survey.

[^17]: Transport Emissions Evaluation Model (TEEMP) Tool. For more information see: http://cleanairinitiative.org/portal/TEEMPTool
reduction in air pollution) and public health (e.g. less fatalities due to accidents). In the interest of the host country, such co-benefits are recommended to be included in the monitoring plan and will thus help to increase transparency of the overall effectiveness of the concrete mitigation action. It is expected that this increases the attractiveness for potential donors and contributes to positive reputation of a country. See Section 4 for more information about co-benefits of transport NAMAs.

In conclusion, it is important to reiterate that time and effort will have to be spent on designing and applying the MRV approaches for a transport NAMA. The stringency of the MRV approach will largely depend on requirements as defined by the financing partner. However, the efforts required may be manageable for transport NAMAs and support good policy making which contributes to sustainable development. The methodologies for the estimation of mitigation effects of transport NAMAs should be consulted with a strong emphasis on the specific needs and conditions of the developing country. The TRANSfer project will continue to facilitate the enhancement of knowledge on MRV of transport NAMAs through dedicated studies and other research activities in this field. The results will be included in the TRANSfer Toolbox, available online at: http://www.TRANSferProject.org.

The responsibility for the implementation and monitoring of NAMAs will lie with the host country. Therefore it will also be the host country who defines authorisations and responsibilities to the institutions working with the NAMA. NAMAs are likely to involve a variety of policy areas, sectors and sub-national levels. Diverse stakeholders from public and private sector may have different experiences with MRV. Hence, NAMA control structures are likely to be anchored in different institutions (e.g. Ministry of Transportation, Airline Operators, and National Maritime Authority).

For National NAMA oversight a Central Coordinating Unit may be required to handle the following:\[18\]:
- incorporate reporting from all line ministries and their regulatory bodies and keep an updated registry of relevant policies and projects;
- report financial flows to policy schemes from both national and international sources (e.g. the Green Climate Fund), including actual disbursements;
- collaborate with the line ministries and record the effects of regulatory initiatives compared to baseline.

2.5 Monitoring and Evaluation

This elaborated monitoring process creates an important basis not only to measure the mitigation impact but also to evaluate policies and to adjust measures accordingly. To analyse the potential for improvement it is essential to involve various stakeholders that represent different perspectives covering transport providers and transport users.

Not only policies should be evaluated on a regular basis. Also the MRV concept itself should be evaluated and further developed during the time. In doing so, it is essential to pay particular attention to the consistency of data sets. To put it simple, it may be a reasonable step to increase the number of household surveys and the level of detail of the questionnaire as data set will be only

\[18\] UNEP Risoe/A primer on MRV for NAMAs
be completed and updated. But, it may be critical to compare historical data of statistics made by a transport company with information of a statistical agency. Of course, it can make sense to change responsibilities and data sources but these changes need to be clearly highlighted and always considered when analysing a historical data.
Box 2.1

Further reading

- CDM Methodology for Bus Rapid Transit Projects (AM0031). Available at: http://cdm.unfccc.int/methodologies/DB/RVSCO1R1ZD7FU854LMWHTDWDUPGTG.
- SLoCaT Global Transport Intelligence Initiative. Available at: http://www.slocat.net/key-slocat-prog/466.

References